Tuesday, January 17, 2017

Gleitende Durchschnittliche Residuen

Diese Frage hat bereits eine Antwort: Für ein ARIMA (0,0,1) - Modell, verstehe ich, dass R folgt der Gleichung: xt mu e (t) thetae (t-1) (Bitte korrigieren Sie mich, wenn ich falsch liege) I Dass e (t-1) gleich dem Rest der letzten Beobachtung ist. Aber wie wird e (t) berechnet Zum Beispiel sind hier die ersten vier Beobachtungen in einem Beispieldaten: 526 658 624 611 Dies sind die Parameter Arima (0,0,1) Modell: Intercept 246.1848 ma1 0.9893 Und der erste Wert, der R-Pass mit dem Modell ist: 327.0773 Wie bekomme ich den zweiten Wert, den ich verwendet: 246.1848 (0.9893 (526-327.0773)) 442.979 Aber die zweite Anpassung Wert von R ist. 434.7928 Ich nehme an, der Unterschied liegt an dem e (t) - Term. Aber ich weiß nicht, wie die e (t) Begriff zu berechnen. Gefragt Jul 28 14 um 16:12 markiert als Duplikat von Glenb 9830. Nick Stauner. Whuber 9830 Jul 29 14 um 1:24 Diese Frage wurde bereits gestellt und hat bereits eine Antwort. Wenn diese Antworten nicht vollständig auf Ihre Frage eingehen, fragen Sie bitte eine neue Frage. Sie könnten die angepassten Werte als einstufige Prognosen mit dem Innovationsalgorithmus erhalten. Siehe zum Beispiel Satz 5.5.2 in Brockwell und Davis downloable aus dem Internet fand ich diese Folien. Es ist viel einfacher, die eingefügten Werte als die Differenz zwischen den beobachteten Werten und den Resten zu erhalten. In diesem Fall geht Ihre Frage auf den Erhalt der Residuen. Nehmen wir diese Serie als MA (1) - Prozeß: Die Residuen, Hut t, können als rekursives Filter erhalten werden: Zum Beispiel können wir den Restwert zum Zeitpunkt 140 als den beobachteten Wert bei t140 minus dem geschätzten Mittelwert minus erhalten Hat mal den vorherigen Restwert, t139): Der Funktionsfilter kann verwendet werden, um diese Berechnungen durchzuführen: Sie können sehen, dass das Ergebnis sehr nahe an den Resten ist, die durch Residuen zurückgegeben werden. Der Unterschied in den ersten Residuen ist wahrscheinlich aufgrund einer Initialisierung, die ich weggelassen haben könnte. Die eingefügten Werte sind nur die beobachteten Werte abzüglich der Residuen: In der Praxis sollten Sie die Funktionen Residuen verwenden und passt aber pädagogisch dazu an, die oben genannte Rekursionsgleichung auszuprobieren. Sie können beginnen, indem Sie einige Beispiele von Hand, wie oben gezeigt. Ich empfehle Ihnen, auch die Dokumentation des Funktionsfilters zu lesen und einige Ihrer Berechnungen damit zu vergleichen. Sobald Sie die Operationen, die bei der Berechnung der Residuen und der gepaarten Werte auftreten, verstehen, werden Sie in der Lage sein, die fachkundigeren Gebrauch von den praktischeren Funktionsresten zu machen und anzupassen. Sie können einige andere Informationen in Bezug auf Ihre Frage in diesem Beitrag zu finden. Zweck: Check Randomness Autokorrelation Plots (Box und Jenkins, S. 28-32) sind eine häufig verwendete Tool für die Überprüfung der Zufälligkeit in einem Datensatz. Diese Zufälligkeit wird durch Berechnen von Autokorrelationen für Datenwerte bei variierenden Zeitverzögerungen ermittelt. Wenn sie zufällig sind, sollten solche Autokorrelationen nahezu null für irgendwelche und alle zeitlichen Verzögerungen sein. Wenn nicht-zufällig, dann werden eine oder mehrere der Autokorrelationen signifikant ungleich Null sein. Darüber hinaus werden Autokorrelationsdiagramme in der Modellidentifikationsstufe für autoregressive, gleitende mittlere Zeitreihenmodelle von Box-Jenkins verwendet. Autokorrelation ist nur ein Maß der Zufälligkeit Beachten Sie, dass unkorreliert nicht unbedingt zufällig bedeutet. Daten mit signifikanter Autokorrelation sind nicht zufällig. Daten, die keine signifikante Autokorrelation aufweisen, können jedoch auf andere Weise noch nicht-zufällig auftreten. Autokorrelation ist nur ein Maß der Zufälligkeit. Im Rahmen der Modellvalidierung (die der primäre Typ der Zufälligkeit ist, die wir im Handbuch behandeln) ist die Überprüfung auf Autokorrelation typischerweise ein ausreichender Test der Zufälligkeit, da die Residuen von schlechten Anpassungsmodellen dazu tendieren, nicht-subtile Zufälligkeit zu zeigen. Einige Anwendungen erfordern jedoch eine strengere Bestimmung der Zufälligkeit. In diesen Fällen wird eine Batterie von Tests, die eine Überprüfung auf Autokorrelation einschließen kann, angewandt, da Daten in vielen verschiedenen und oft subtilen Arten nicht-zufällig sein können. Ein Beispiel dafür, wo eine strengere Überprüfung der Zufälligkeit erforderlich ist, wäre das Testen von Zufallszahlengeneratoren. Beispiel-Diagramm: Autokorrelationen sollten nahe-Null für die Zufälligkeit sein. Dies ist bei diesem Beispiel nicht der Fall, so dass die Zufallsannahme fehlschlägt. Dieses Beispiel-Autokorrelationsdiagramm zeigt, dass die Zeitreihe nicht zufällig ist, sondern vielmehr einen hohen Grad an Autokorrelation zwischen benachbarten und nahe benachbarten Beobachtungen aufweist. Definition: r (h) versus h Autokorrelationsdiagramme werden durch vertikale Achse gebildet: Autokorrelationskoeffizient, wobei C h die Autokovarianzfunktion ist und C 0 die Varianzfunktion ist. Beachten Sie, dass R h zwischen -1 und 1 liegt Folgende Formel für die Autokovarianz-Funktion Obwohl diese Definition weniger Bias aufweist, weist die (1 N) - Formulierung einige wünschenswerte statistische Eigenschaften auf und ist die am häufigsten in der Statistikliteratur verwendete Form. Siehe Seiten 20 und 49-50 in Chatfield für Details. Horizontale Achse: Zeitverzögerung h (h 1, 2, 3.) Die obige Zeile enthält auch mehrere horizontale Bezugslinien. Die Mittellinie ist auf Null. Die anderen vier Zeilen sind 95 und 99 Konfidenzbänder. Beachten Sie, dass es zwei verschiedene Formeln für die Erzeugung der Vertrauensbänder gibt. Wenn das Autokorrelationsdiagramm verwendet wird, um auf Zufälligkeit zu testen (dh es gibt keine Zeitabhängigkeit in den Daten), wird die folgende Formel empfohlen: wobei N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha ) Ist das Signifikanzniveau. In diesem Fall haben die Vertrauensbänder eine feste Breite, die von der Probengröße abhängt. Dies ist die Formel, die verwendet wurde, um die Vertrauensbänder im obigen Diagramm zu erzeugen. Autokorrelationsdiagramme werden auch in der Modellidentifikationsstufe für die Montage von ARIMA-Modellen verwendet. In diesem Fall wird für die Daten ein gleitendes Durchschnittsmodell angenommen und die folgenden Konfidenzbänder erzeugt: wobei k die Verzögerung, N die Stichprobengröße, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha) ist Das Signifikanzniveau. In diesem Fall nehmen die Vertrauensbänder zu, wenn die Verzögerung zunimmt. Das Autokorrelationsdiagramm kann Antworten auf die folgenden Fragen liefern: Sind die Daten zufällig Ist eine Beobachtung, die mit einer angrenzenden Beobachtung in Beziehung steht, ist eine Beobachtung, die mit einer zweimal entfernten Beobachtung zusammenhängt (usw.) Ist die beobachtete Zeitreihe weißes Rauschen Ist die beobachtete Zeitreihe sinusförmig Ist die beobachtete Zeitreihe autoregressiv Was ist ein geeignetes Modell für die beobachtete Zeitreihe Ist das Modell gültig und ausreichend Ist die Formel s ssqrt gültig Wichtigkeit: Sicherstellung der Gültigkeit von technischen Schlussfolgerungen Zufall (zusammen mit festem Modell, fester Variation und fester Verteilung) ist Eine der vier Annahmen, die typischerweise allen Messprozessen zugrunde liegen. Die Zufallsannahme ist aus den folgenden drei Gründen von entscheidender Bedeutung: Die meisten standardmäßigen statistischen Tests hängen von der Zufälligkeit ab. Die Gültigkeit der Testresultate steht in direktem Zusammenhang mit der Gültigkeit der Zufallsannahme. Viele häufig verwendete statistische Formeln hängen von der Zufallsannahme ab, wobei die häufigste Formel die Formel zur Bestimmung der Standardabweichung des Stichprobenmittels ist: wobei s die Standardabweichung der Daten ist. Obwohl stark verwendet, sind die Ergebnisse aus der Verwendung dieser Formel ohne Wert, es sei denn, die Zufälligkeitsannahme gilt. Für univariate Daten ist das Standardmodell Wenn die Daten nicht zufällig sind, ist dieses Modell falsch und ungültig, und die Schätzungen für die Parameter (wie die Konstante) werden unsinnig und ungültig. Kurz, wenn der Analytiker nicht auf Zufälligkeit prüft, dann wird die Gültigkeit vieler statistischer Schlüsse verdächtig. Das Autokorrelationsdiagramm ist eine hervorragende Möglichkeit, auf solche Zufälligkeiten zu überprüfen. Moving Average - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 ausrechnen Tage als ersten Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Die Abwärtsmomentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn eine kurzfristige MA unter einem längerfristigen MA liegt.


No comments:

Post a Comment